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The forced response of waveguides subjected to time harmonic loading is treated. The

approach starts with the wave and finite element (WFE) method where a segment of the

waveguide is modeled using traditional finite element methods. The mass and stiffness

matrices of the segment are used to formulate an eigenvalue problem whose solution

response of the waveguide to a convected harmonic pressure (CHP). Since the Fourier

transform of the response to a general excitation is a linear combination of the

responses to CHPs, the response to a general excitation can be obtained via an inverse

Fourier transform process. This is evaluated analytically using contour integration and

the residue theorem. Hence, the approach presented herein enables the response of a

waveguide to general loading to be found by: (a) modeling a segment of the waveguide

using finite element methods and post-processing it to obtain the wave characteristics,

(b) using Fourier transform and contour integration to obtain the wave amplitudes and

(c) using the wave amplitudes to find the response at any point in the waveguide.

Numerical examples are presented.

& 2010 Elsevier Ltd. All rights reserved.
1. Introduction

The dynamic response of simple structures (rods, beams, etc.) can be obtained analytically. However, for complicated
structures, this can be a formidable task, if at all possible. Often, finite element analysis (FEA) is used, but finite element
(FE) models can become impractically large at high frequencies, bringing an assortment of problems (memory capacity
issues, accuracy, computation cost and time, etc.). An alternative is wave-based methods, which yield information about
wave propagation characteristics (wavenumber, wavemodes, group velocity, modal density, etc.). This is of great value for
many applications such as disturbance propagation, energy transmission, structure-borne sound, statistical energy analysis
and so on.

Many structures can be regarded as waveguides, i.e. the structure is uniform in one direction. The cross-section of the
waveguide can be arbitrarily complex, but must have the same geometric and physical properties at every point along the
axis of the waveguide, x, as shown in Fig. 1.

Analytical solutions are available for wave propagation in simple waveguides (rods, beams, etc.), [1], while approximate
solutions are often sought for complex waveguides. It is here that FEA can be used. Within this category, one approach is
the ‘‘spectral finite element’’ (SFE) method where the displacement field is assumed separable and the response for free
wave propagation is of the form e� ikx along the waveguide axis. An eigenvalue problem is then formulated and solved.
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nno), brm@isvr.soton.ac.uk (B.R. Mace).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2010.07.009
mailto:renno@isvr.soton.ac.uk
mailto:brm@isvr.soton.ac.uk
dx.doi.org/10.1016/j.jsv.2010.07.009


Nomenclature

A cross-sectional area, m2

E Young’s modulus of elasticity, N/m2

G shear modulus, N/m2

I identity matrix of appropriate dimensions
I area moment of inertia, m4

L length, m
U axial displacement, m
W transverse displacement, m
Y mobility, m/N s
b width, m
h thickness, m
k wavenumber of the structure, m�1

t time, s
x, y, z coordinates along the corresponding axes, m
o excitation frequency, rad/s
r mass density, kg/m3

n Poisson’s ratio, dimensionless

g wavenumber of the excitation, m�1

Superscripts

T matrix transpose
+ quantity pertaining to a positive-going wave
� quantity pertaining to a negative-going wave.

Subscripts

L quantity pertaining to the left end of the
segment

R quantity pertaining to the right end of the
segment

x, y, z quantity/property pertaining in the respective
direction

r quantity related to the response
e quantity related to the excitation
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The major difficulty of the SFE method is that new spectral mass and stiffness matrices are required on a case-by-case
basis, which can be a significant task in itself, e.g. Refs. [2–4].

An alternative approach is to model a small segment of the waveguide using conventional FE methods, and then apply
periodicity conditions. This approach is termed the wave and finite element (WFE) method, and its formulation leads to an
eigenvalue problem whose solution yields the wave characteristics. The advantages of this approach are two-fold. First, the
full power of existing FE methods can be harnessed. Commercial FEA packages and existing element libraries can be used
to model a segment and hence there is no need for new types of elements or FEA formulations. Second, even for
waveguides of complex cross-sections, the size of the model will generally be very small, circumventing the problems FEA
encounters at high frequencies.

The WFE method has been used to study the free [5] and forced [6] vibration of waveguides. Earlier formulations can be
found in Refs. [7,8] where the focus was on the vibration of rail tracks using periodic structure theory. The WFE method for
waveguides has also been used to study thin-walled structures [9], laminated plates [5] and fluid-filled pipes [10,11]. The
WFE method has also been extended to two-dimensional plane [12] and cylindrical structures [13].

In this paper, a new approach for obtaining the forced response of waveguides to arbitrary excitations based on the WFE
method is presented. First, a segment of the waveguide is modeled using standard FE methods, and then the WFE approach
is used to find the wave properties of the waveguide. The response of the structure when excited with a convected
harmonic pressure (CHP) is then obtained. For a general excitation (whose spatial dependence is separable in the manner
described in Section 3), the Fourier transform can be used to write the general excitation as a superposition of CHPs. Then,
the Fourier transform of the response to the general excitation is presented as a superposition of the responses to CHPs.
Thus, the response to the general excitation can be obtained via an inverse Fourier transform and this is evaluated
analytically by contour integration and the residue theorem. Previous work considered the response to a point force
[6,14,15]. However, the formulation presented in this manuscript allows the response to more general, time harmonic
excitation to be found by using the Fourier transform and contour integration techniques.

This paper is organized as follows: in Section 2, the WFE method is summarized. Then, the formulation of the response
to a general excitation is presented in Section 3. The response to a CHP is first found and then the response to general
excitation is expressed as an inverse Fourier transform that is evaluated analytically using contour integration and the
residue theorem. Illustrative examples are included in Section 4 and conclusions to this work are drawn in Section 5.
Fig. 1. Waveguides with a (a) zero-dimensional, (b) one-dimensional and (c) two-dimensional cross-section.
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2. Review of the wave and finite element method

In this section a brief overview of the WFE method is presented first. Then the physical degrees of freedom (DOFs) are
projected onto the wave basis and the response of waveguides to point excitation is found.

2.1. Free wave propagation and the wave basis

The WFE method starts with obtaining the model of a segment of a waveguide, Fig. 2. This can be done using any FEA package
with the only constraint being that the nodes and their DOFs are ordered identically on the left and right sides of the segment.
Internal nodes can be eliminated via dynamic condensation [15]. The length of the segment, D, should not be too large compared
to the shortest wavelength; otherwise the discretized model will not accurately describe the motion of the waveguide. On the
other hand, D should not be too small compared to the shortest wavelength to avoid machine round-off errors [15].

Time harmonic dependence of the form eiot is assumed throughout this work and is suppressed for brevity. The
governing equation of the segment of Fig. 2 is

½K�o2M�q¼ fþe, (1)

where q, f and e are (2n�1) vectors of nodal DOFs, internal and external nodal forces, respectively, and M and K are the
mass and stiffness matrices of the segment. Damping can be included by a viscous damping matrix C or by K being
complex. The dynamic stiffness matrix D=K�o2M can be partitioned to reflect the influence of the left and right nodes of
the segment. Hence, for free wave propagation, Eq. (1) is expressed as

DLL DLR

DRL DRR

" #
qL

qR

( )
¼

fL

fR

( )
: (2)

When a wave propagates freely through the waveguide, the propagation constant l=e� ikD relates the right and left
nodal DOFs and forces by

qR ¼ lqL, fR ¼�lfL: (3)

Eq. (2) is rearranged into

l
qL

fL

( )
¼ T

qL

fL

( )
, (4)

where

T¼
�D�1

LR DLL D�1
LR

�DRLþDRRD�1
LR DLL �DRRD�1

LR

" #
(5)

is the transfer matrix. The eigenvalue problem of Eq. (4) is solved to yield the propagation constants lj and the
corresponding wavenumbers kj (j=1, y, 2n). For complicated waveguides with many DOFs at each node, care needs to be
taken when solving this eigenvalue problem as various numerical problems may arise [15]. The eigenvalue problem is
usually then recast into one of a number of better-conditioned forms [16].

It has been shown [16,17] that the eigenvalues of the transfer matrix occur in reciprocal pairs as lþj and l�j ¼ 1=lþj with
wavenumbers kþj and k�j ¼�kþj , corresponding to positive- and negative-going waves, respectively. Associated with these
eigenvalues are the positive- and negative-going eigenvectors /þj and /�j , respectively, which will also be referred to as
wavemodes. As per Eq. (4), every wavemode can be partitioned into a displacement and a force sub-vector

/j ¼
/q

/f

( )
j

: (6)

Positive-going waves are characterized by

lþj
��� ���r1,

ReffT
L
_qLg ¼ RefiofT

L qLgo0 if lþj
��� ���¼ 1, (7)
Fig. 2. FE segment of a waveguide.
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which states that if the wave is traveling in the positive direction, then its amplitude should be decreasing or that if its
amplitude remains constant, then there is time average power transmission in the positive direction.

With the positive- and negative-going waves identified, one could group the wavemodes as

Uþ ¼ /þ1 � � � /þn
h i

, U� ¼ /�1 � � � /�n
h i

, U¼ Uþ U�
� �

: (8)

It is also advantageous to obtain the left eigenvectors of the transfer matrix. These are (1�2n) vectors which can be partitioned as

wj ¼ ½wf wq�j, (9)

and further grouped into

W¼
Wþ

W�

" #
: (10)

The left and right wavemodes are orthogonal, and can be normalized so that

WþUþ ¼ I, W�U� ¼ I: (11)

A useful consequence of this normalization is that

WTU¼ diagðljÞ, (12)

where diag( � ) represents a diagonal matrix.
The partitions of the left and right eigenvectors can be used to form the matrices

Uþq ¼ /þq,1 � � � /þq,n

h i
, Wþq ¼

wþq,1

^

wþq,n

2
664

3
775: (13)

Similar expressions hold for U�q ,W�q ,U7
f and W7

f . These matrices, together with the orthogonality relations of Eq. (11),

define transformations between the physical domain, where the motion is described in terms of q and f, and the wave
domain, where the motion is described in terms of waves of amplitudes a+ and a� traveling in the positive and negative
directions, respectively. Specifically

qL ¼Uþq aþ þU�q a�; fL ¼Uþf aþ þU�f a�, (14)

or

qL

fL

( )
¼Ua; a¼

aþ

a�

� �
: (15)

In practice, as in modal analysis, only m pairs of (positive- and negative-going) waves might be retained, so that U7
q,f and

W7
q,f are n�m and m�n matrices, respectively. The number retained can be different at different frequencies. All the

propagating waves, for which 9l9=1, must be retained together with the least-rapidly attenuating waves, i.e. for 9l9o1, all

those for which 9l940.1, or some other user-defined criterion. The reasons for reducing the size of the wave basis are partly
that the size of the model will be smaller, but primarily that the calculation of the high-order wavemodes, which decay very
rapidly with distance (by orders of magnitude over the segment length) and thus have a negligible contribution to the response,
is very prone to poor numerical conditioning [15]. They can contaminate all subsequent calculations if they are not removed.
2.2. Response of an infinite waveguide to a point excitation

The response of an infinite waveguide to a concentrated load can now be examined. The following is briefly summarized
from Ref. [15]. A point excitation fe acting at the origin will generate positive- and negative-going waves of amplitudes a+

and a� which will propagate away from the excitation point to the right and left, respectively, Fig. 3. Continuity and
Fig. 3. Wave amplitudes generated by a point excitation.
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equilibrium equations can be written at the excitation point and projected onto the wave basis to give

Uþq �U�q
Uþf �U�f

2
4

3
5 aþ

a�

� �
¼

0

fe

( )
: (16)

The orthonormalization approach presented in Eq. (11) can be used to avoid inverting the system matrix in Eq. (16) (which
can lead to numerical problems [15]), and hence premultiplying by the left eigenvectors yields

aþ ¼Wþq fe, a� ¼�W�q fe: (17)

Next, the response to general (but separable) excitation is considered. First, the amplitudes of waves generated by a
general load are obtained. Then, the response of finite waveguides is discussed.

3. Response to general excitation

The response of waveguides to general, time harmonic loading will now be formulated. The following treatment is
applicable to waveguides with a zero-, one-, or two-dimensional cross-section (Fig. 1). The loading can be a vectorial
quantity with components acting along any of the coordinate axes and the only restriction imposed is that every
component can be written in the form p(x, y, z, t)=px(x)pyz(y, z)eiot. In other words, the spatial part of every component can
be separated into variation along the waveguide, px(x), and over the waveguide’s cross-section, pyz(y, z). For instance, the
waveguide in Fig. 1c can be excited along the three axes. In this case, the loading will have the form

pðx,y,z,tÞ ¼

pxðx,y,z,tÞ

pyðx,y,z,tÞ

pzðx,y,z,tÞ

8><
>:

9>=
>;¼

px
xðxÞp

x
yzðy,zÞ

py
xðxÞp

y
yzðy,zÞ

pz
xðxÞp

z
yzðy,zÞ

8>><
>>:

9>>=
>>;eiot , (18)

where the superscripts x, y and z indicate the direction of the components of p. The developments presented below are for
one component. Since all the components of the loading will be later resolved into consistent nodal forces, the
contributions of additional components can be simply added to the consistent nodal forces.

One approach to finding the response would be to determine the response to an excitation d(x)pyz(y, z) as described in
Section 2.2 and then convolve this response with the loading px(x). This is perhaps the simplest approach for point or very
localized forces. An alternative approach that is more appealing for finding the response of waveguides to distributed loads is
developed below. The cornerstone in this approach is obtaining the response to a CHP of the form e� igxpyz(y, z), which will be
treated first, and then using a Fourier decomposition of px(x) and an inverse Fourier transform to determine the total response.
This inverse transform can be evaluated analytically by contour integration, yielding the forced response at very little cost.

3.1. Response to unit amplitude convected harmonic pressure

The response to unit amplitude CHP acting along the axis of the waveguide will serve as the kernel for general loading
conditions. For a zero-dimensional cross-section, a CHP takes the form p(x)=e� igx, whereas for a one-dimensional cross-section
it is p(x, y)=e� igxpy(y). In a similar fashion, when the cross-section is two-dimensional, p(x, y, z)=e� igxpyz(y, z) indicating the
distribution of the excitation over the cross-section. The harmonic load over the segment is resolved to find the nodal forces
applied at the ends of the segment. Moreover, the propagation constant for the forced vibration of the waveguide is now
m=e� igD, which is imposed by the CHP. Consequently, the right and left nodal displacements and forces are related through

qR ¼ mqL, fR ¼�mfL: (19)

The forced form of Eq. (2) is

DLL DLR

DRL DRR

" #
qL

qR

( )
¼

fL

fR

( )
þ

eL

eR

( )
: (20)

The external excitation could merely be lumped at the nodes. Preferably, consistent nodal forces can be calculated as
follows. If the segment is one element long then eL and eR can be obtained through

eL

eR

( )
¼

Z
R

e�igxpyzðy,zÞNT
ðx,y,zÞ dR, (21)

where N(x, y, z) is the vector of shape functions of the FE discretization process, and S is the integration domain (i.e. the
integral is over the cross-section and the length of the element). If there are internal nodes, consistent nodal forces can be
calculated for each and combined via dynamic condensation to yield eL and eR at the ends of the segment. Eq. (20) can be
rearranged into

qR

�fR

( )
¼ T

qL

fL

( )
þ

D�1
LR 0

�DRRD�1
LR I

" #
eL

eR

( )
: (22)
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Now, the periodicity conditions of Eqs. (19) are invoked, to obtain

½mI�T�
qL

fL

( )
¼

D�1
LR 0

�DRRD�1
LR I

" #
eL

eR

( )
: (23)

Numerical problems might arise when inverting the system matrix [mI�T] in the above equation [15]. These can be
avoided by decomposing qL and fL into the wave domain, and exploiting the orthonormality properties of the wavemodes.
Substituting Eq. (15) in Eq. (23), premultiplying by W and using Eqs. (11) and (12) gives

½mI�diagðljÞ�a¼W
D�1

LR 0

�DRRD�1
LR I

" #
eL

eR

( )
: (24)

The matrix on the left is diagonal and can be easily inverted to obtain

qL

fL

( )
¼Ua¼U diag

1

m�lj

� �
W

D�1
LR 0

�DRRD�1
LR I

" #
eL

eR

( )
: (25)

Again, although the system has n pairs of (positive- and negative-going) waves, only m pairs can be retained and used in
the wave expansion. Eq. (25) can also be used to find the response at xr, i.e.

qðxrÞ

fðxrÞ

( )
¼U diag

e�igxr

m�lj

� �
W

D�1
LR 0

�DRRD�1
LR I

" #
eL

eR

( )
, (26)

where q(xr) and f(xr) are n�1 vectors of the DOFs and forces at xr. This formulation will prove useful in the next section,
where the response to general excitation is considered.
3.2. General excitation

Often, waveguides are excited by spatially distributed loads where p(x, y, z) could be arbitrary. In the following
formulation, the only restriction imposed on p(x, y, z) is that it can be written as p(x, y, z)=px(x)pyz(y, z). The treatment
starts with decomposing p(x, y, z) by partial Fourier transform into

pðx,y,zÞ ¼
pyzðy,zÞffiffiffiffiffiffi

2p
p

Z 1
�1

pxðgÞe�igx dg, (27)

where

pxðgÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
�1

pxðxÞe
igx dx (28)

is the Fourier transform of px(x). The inverse Fourier transform allows the expression of the spatial function p(x, y, z) as a
linear combination of CHPs, and thus, by linearity of Eq. (20), the response to p(x, y, z) is a linear combination of the
response to a CHP, namely

qðxrÞ

fðxrÞ

( )
¼UaðxrÞ ¼

1ffiffiffiffiffiffi
2p
p U

Z 1
�1

diag
pxðgÞe�igxr

m�lj

� �
W

D�1
LR 0

�DRRD�1
LR I

" #
eL

eR

( )
dg (29)

in Eq. (21).
The integral in Eq. (29) can be evaluated analytically by contour integration and the residue theorem. From Eq. (29), the

wave amplitudes at point xr are

aþ ðxrÞ

a�ðxrÞ

( )
¼

1ffiffiffiffiffiffi
2p
p

Z 1
�1

diag
e�igxr pxðgÞ
m�lj

� �
W

D�1
LR 0

�DRRD�1
LR I

" #
eL

eR

( )
dg: (30)

The wave amplitude aþj of the jth positive-going wavemode can be written as

aþj ðxrÞ ¼
1ffiffiffiffiffiffi
2p
p

Z 1
�1

e�igxr pxðgÞgþj ðgÞ
m�lþj

( )
dg, (31)

where

gþj ðgÞ ¼wþj
D�1

LR 0

�DRRD�1
LR I

" #
eLðgÞ
eRðgÞ

( )
, j¼ 1,. . .,m: (32)
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The contour of integration is closed in the lower or upper complex g half-plane as shown in Fig. 4. The choice depends on
the convergence of the integral around the semi-circular segments G1 and G2, where g=R eiy and R-N. From the residue
theorem, the integrals around the contours C1=G1[G0 and C2=G2[G0 are then 72pi

P
Resðg0Þ, respectively, where the

sum is of the residues of all the poles g0 within the contour.
The choice of contour depends on the excitation and response locations. If xr is to the right of the loaded area (xrZxe,

8xe), then the contour should be closed in the lower half-plane (Fig. 4b). For example, for a point force fe applied at point
xerxr, pxðgÞ ¼ eigxe fe=

ffiffiffiffiffiffi
2p
p

and the numerator of the integrand involves the term e� ig(xr�xe) which tends to zero on G2.
Similarly, if (xrrxe, 8xe), the contour is closed in the upper half-plane along G1. (If xr is within the excited region the
integrand is split into two parts, G1 and G2 being chosen for the respective parts.)

Returning to Eq. (31), the poles of the integrand lie at

g0 ¼ kþj þ
2pp
D

, j¼ 1,. . .,2m; p 2 Z: (33)

The poles other than when p=0 are artifacts of the FE discretization process, and their contribution will be neglected. If
their contribution is significant this implies that the FE discretization is not fine enough. Thus, only the residue of the pole
located at kþj will be considered in the calculation of the integral.

For a positive-going wave, from Eq. (7) g0 either lies in the lower half-plane or may lie on the real axis for a propagating
wave in an undamped waveguide. In this case there is also a pole at �g0 for the negative-going wave. The part of the
contour along the real axis must then be indented as shown in Fig. 5. The excitation can in principle produce a pole at the
origin, as shown, but this has zero residue. The residue can be calculated as [18]

Res
aðzÞ

bðzÞ
,z0

� �
¼

aðz0Þ

ðd=dzÞbðz0Þ
(34)

where b(z0)=0. Hence, the residue associated with the pole at g0 is

Res
e�igxr pxðgÞgþj ðgÞ

m�lþj
,g0

 !
¼

e�igxr pxðgÞgþj ðgÞ
ðd=dgÞðm�lþj Þ

�����
g ¼ kþ

j
:

¼
e�ikþ

j
xr pxðk

þ

j Þg
þ

j ðk
þ

j Þ

�iDe�ikþ
j
D

¼
e�ikþ

j
xr pxðk

þ

j Þgjðk
þ

j Þ

�iDlþj
(35)

Thus, if xr is to the right of the loaded area (xrZxe, 8xe), the contour is closed in the lower half-plane, the pole g0 lies within
the contour of integration and

aþj ðxrÞ ¼�2pi
1ffiffiffiffiffiffi
2p
p

pxðk
þ

j Þe
�ikþ

j
xr

�iDlþj

0
@

1
Awþj

D�1
LR 0

�DRRD�1
LR I

" #
eLðk

þ

j Þ

eRðk
þ

j Þ

8<
:

9=
;,

¼
2ppxðk

þ

j Þe
�ikþ

j
xr

lþj D
ffiffiffiffiffiffi
2p
p wþj

D�1
LR 0

�DRRD�1
LR I

" #
eLðk

þ

j Þ

eRðk
þ

j Þ

8<
:

9=
; j¼ 1,. . .,m: (36)
Fig. 5. Indentations of the contours: (a) xrrxe and (b) xrZxe.

Fig. 4. Possible choices of the contour for evaluating the integral in Eq. (31).



J.M. Renno, B.R. Mace / Journal of Sound and Vibration 329 (2010) 5474–5488 5481
On the other hand, if xr is to the left of the loaded area (xrrxe, 8xe), the contour is closed in the upper half-plane and
aþj ðxrÞ ¼ 0.

In an analogous manner, for the negative-going wave amplitudes, if xr is to the left of the loaded area (xrrxe, 8xe), one
finds that

a�j ðxrÞ ¼ 2pi
1ffiffiffiffiffiffi
2p
p

pxðk
�
j Þe
�ik�

j
xr

�iDl�j

 !
w�j

D�1
LR 0

�DRRD�1
LR I

" #
eLðk

�
j Þ

eRðk
�
j Þ

( )

¼�
2ppx k�j


 �
e�ik�

j
xr

l�j D
ffiffiffiffiffiffi
2p
p w�j

D�1
LR 0

�DRRD�1
LR I

" #
eLðk

�
j Þ

eRðk
�
j Þ

( )
, j¼ 1,. . .,m, (37)

and if xr is to the right of the loaded area (xrZxe, 8xe), a�j ðxrÞ ¼ 0.
The above approach still applies if p(x, y, z)=px(x)pyz(y, z) is given numerically. The Fourier transform can be used

to evaluate pxðk
7
j Þ numerically and the external nodal forces eLðk

7
j Þ and eRðk

7
j Þ can be evaluated numerically through

Eq. (21).

3.3. Response of finite waveguides

A finite waveguide excited over a span Le is shown in Fig. 6. The wave amplitudes at various locations are also indicated.
The excitation would generate positive- and negative-going waves of amplitudes a+ and a� , respectively, if it were applied
to an infinite waveguide. Wave amplitudes b+ , for example, are the superposition of the directly excited waves of
amplitudes a+ and waves of amplitudes g+ after propagating across the excited region. The boundary reflection matrices
relate the incident and the reflected waves as

c� ¼ rRcþ , dþ ¼ rLd�: (38)

Since any boundary condition can be written as

AfþBq¼ 0, (39)

and the DOFs and forces can be projected onto the wave domain, the reflection matrices can be expressed as

rR ¼�ðARU
�

f þBRU
�

q Þ
�1
ðARU

þ

f þBRU
þ

q Þ (40)

rL ¼�ðALU
þ

f þBLU
þ

q Þ
�1
ðALU

�

f þBLU
�

q Þ (41)

The case of a distributed load will be treated first, Fig. 6. The amplitudes of the directly excited positive- and negative-
going waves generated by the distributed load acting over Le=x2�x1, a+(x2) and a�(x1) can be obtained via Eq. (35) and
(36), respectively. Then, the amplitudes of the incident waves b and g are given by

bþ ¼ ½I�sðx2ÞrLsðLÞrRsðL�x2Þ�
�1½aþ ðx2Þþsðx2ÞrLsðx1Þa

�ðx1Þ�, (42)

b� ¼ sðL�x2ÞrRsðL�x2Þb
þ , (43)

g� ¼ a�þsðLeÞb
�, (44)

gþ ¼ sðx1ÞrLsðx1Þg
�, (45)

where

sðxÞ ¼ diagðe�ikþ
1

x,. . .,e�ikþm xÞ: (46)

is the wave propagation matrix that gives the amplitudes of the waves after propagating a distance x. The magnitudes of all
the elements of s(x) are r1 with the elements corresponding to high-order waves being nearly zero, thus ensuring good
conditioning [15].
Fig. 6. Wave amplitudes in a finite waveguide excited by an arbitrary distributed load (hatched region).
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The response at xr will depend on its location with respect to the loaded span. If xrZx2, then

hþ ¼ sðxr�x2Þb
þ , (47)

h� ¼ sðL�xrÞrRsðL�xrÞh
þ , (48)

are used to obtain the response at xr. If xrrx1, the wave amplitudes

h� ¼ sðx1�xrÞg
�, (49)

hþ ¼ sðxrÞrLsðxrÞh
�, (50)

are used to evaluate the displacement at xr. For the case where x1oxrox2, the load can always be divided into two parts at
xr. Then, the amplitude of the forced waves and incident waves at xr can be obtained for each part of the load as per
Eq. (41)–(44). Finally, the superposition principle is used to find the amplitude of the incident waves at xr. The impetus
behind this is to avoid inverting s(x) which might be close to singular if the elements corresponding to high-order waves
are nearly zero.

When a point force, fe, is applied at xe, the amplitude of the forced waves a+(xe) and a�(xe) can be obtained either via
Eqs. (35) and (36) or via Eq. (17). Eqs. (41)–(49) still apply with x1 and x2 simply replaced by xe.

4. Illustrative examples

In this section, three examples are presented to demonstrate the approach outlined above. The first is of a rod in axial
vibrations excited with a point force and a constant distributed load. Analytical solutions also exist for the second example,
a Euler–Bernoulli beam in bending. The third example, a three-dimensional laminated beam, is more challenging as
analytical solutions are, at best, very difficult to obtain. In the following, a complex Young’s modulus ~E ¼ Eð1þ iZÞ is used,
where the loss factor Z equals 3% for all the numerical cases considered.

4.1. Uniform rod in axial vibration

An infinite uniform rod undergoing axial vibration has two wavenumbers, 7ka, where [1]

ka ¼

ffiffiffiffi
r
~E

r
o: (51)

A concentrated axial force, fe, acting at x=0 is considered first. The excited wave amplitudes are [1]

aþ ¼ a� ¼
�ife

2ka
~EA
: (52)

A segment of length D is taken from the rod and modeled using one element. The element has two nodes with one degree
of freedom per node and a linear shape function is assumed [19]. In the WFE approach, Eq. (17) or Eqs. (41)–(49) can be
used to obtain a+ and a� numerically. The results are normalized by the factor ~EA=feD so that

â
þ
¼

~EA

feD
aþ ¼

�i

2kaD
: (53)

The WFE method provides a very good estimate of the wave amplitudes at low frequency as shown in Fig. 7. As the
frequency increases, the WFE results deviate from the analytical results, and the method completely breaks down near
kaD=3.5 because of increasing FE discretization errors. For CHP excitation, there is a further issue concerning how
accurately the element shape function can reproduce the nodal forces for exactly the same reasons: the element length
must be small enough with respect to the wavelength of excitation.

As a second example, an axial load of intensity pe N/m is applied to the rod between �x and x. The response can be
obtained analytically as

UðxÞ ¼
pe

~EAk2
a

�i sinðxkaÞeikax if xr�x,

cosðkaxÞe�ikax�1 if �xrxrx,

�i sinðxkaÞeikax if xZx:

8><
>: (54)

Again, the results are compared in terms of the normalized displacement, defined as

ÛðxÞ ¼
~EA

pex
2

UðxÞ: (55)

To obtain the response to a distributed load, the amplitudes of the excited waves are obtained from Eqs. (35) and (36). The
results are shown in Figs. 8 and 9 with D=x/20. The minima appearing in Fig. 8 occur when kax¼ npðn 2 NÞ. The WFE
results agree very well with the theoretical results at low frequencies whether or not the response point is outside or



Fig. 8. Magnitude of the normalized displacement Û at xr=1.5x for a uniform rod excited by a uniformly distributed load: — analytical results, - - WFE

results.

Fig. 7. Magnitude of the normalized wave amplitude 9âþ 9¼ 9â�9 of a uniform rod excited by a point force at xe=0: — analytical results, - - WFE results.

Fig. 9. Magnitude of the normalized displacement Û at xr=0.5x for a uniform rod excited by a uniformly distributed load: — analytical results, - - WFE

results.
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within the loaded span of the waveguide. Noticeable errors are apparent when kaD41. These are again attributed to FE
discretization errors.
4.2. Euler–Bernoulli beam in bending

A Euler–Bernoulli beam in bending has four wavenumbers 7kb and 7 i kb, where

kb ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
rA
~EI
o2

4

s
: (56)

The response to a CHP of the form pðxÞ ¼ pee�igx is

WðxÞ ¼
pe

~EIk4
b

1

ðg=kbÞ
4
�1

e�igx: (57)
Fig. 10. Magnitude of the normalized response at xr=0 for a Euler–Bernoulli beam excited by a CHP: — analytical, - - WFE (kbD=0.05), -.- WFE (kbD=1),

... WFE (kbD=3).

Fig. 11. Analytical response of a Euler–Bernoulli beam to a CHP: log109 ~W ðxÞ9 as a function of O and gD. The dashed line - - represents Re(kbD) as predicted

by the WFE method.
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The response can also be obtained straightforwardly via Eq. (26), and forms the kernel when obtaining the response to
general loading. The analytical and WFE results will be compared in terms of a normalized response

ŴðxÞ ¼
~EIk4

b

pe
WðxÞ: (58)

The normalized response is shown as a function of g=kb in Fig. 10. When the wavenumber ratio is small, the analytical and
WFE results are in good agreement, even for relatively high frequencies (kbD=1), since the motion is dominated by the
forcing wavenumber rather than the natural wavenumber of the beam. For very high frequencies (kbD=3), the WFE results
deviate from the analytical solution even at low wavenumber ratio due to large FE discretization errors. At high
Fig. 12. Schematic of the laminated beam.

Fig. 13. Magnitude of the input mobility of the laminated beam at A in the (a) x-direction, (b) y-direction and (c) z-direction: — full FEA, - - WFE results

with 11 wavemodes retained.
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wavenumber ratios, the WFE results deviate from the analytical results as the forcing wavelength becomes small compared
to the segment’s length. FE discretization errors arise in the calculation of the nodal forces if the element length is too large
compared to the wavelength of the excitation.

The response of a Euler–Bernoulli beam to a CHP can be further illustrated by introducing the dimensionless quantities

~W ðxÞ ¼
~EI

peD
4

WðxÞ, X¼

ffiffiffiffiffiffiffi
rA
~EI

s
D2o: (59)

Fig. 11 shows the response to a CHP as a function of the dimensionless frequency and wavenumber. The response is small
except when the forcing wavenumber is near the free wavenumber of the beam. Furthermore, the free wavenumber of the
beam can be traced at the projection of the maximum values of the response as shown in Fig. 11.
4.3. Cantilevered laminated beam

The third example is of a cantilevered beam, comprising four orthotropic layers of 1mm thick glass-epoxy, Fig. 12. The
stacking sequence is [0/45/�45/0] degrees, and the material properties of each glass-epoxy layer along the axes x0, y0 and z0

of orthotropy are Exu ¼ Ezu ¼ 54� 109, Eyu ¼ 4:8� 109, Gxuyu ¼ Gzuyu ¼ 1:78� 109, Gxuzu ¼ 3:16� 109, nxuyu ¼ nzuyu ¼ 0:313,
nxuzu ¼ 0:06, and r=2000. The dimensions of the beam are L=0.2, b=0.02 and h=0.004. ANSYSs was used to model the
structure with SOLID45 elements of length D=2 mm. Each layer was discretized using four elements and hence the
segment has 16, eight-noded elements with three translational DOFs per node. Thus, there are 75 DOFs on each side of
Fig. 14. Magnitude of the transfer mobility of the laminated beam in the y-direction at (a) B, (b) C and (c) D: — full FEA, - - WFE results with 11

wavemodes retained.
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the segment. Using the coordinate system of Fig. 12, the following points are defined: Að0:5L, h=2, �b=2Þ, BðL, h=2, 0Þ,
CðL=2, h=2, 0Þ and D(L/4, h/2, 0).

When the eigenvalue problem of Eq. (4) is solved, 75 pairs of (positive- and negative-going) waves are obtained.
Wavemodes with sufficiently small 9ImðkDÞ9 are retained to calculate the forced response. Most of the wavemodes
obtained are strongly decaying waves at each frequency, and their contribution to the response is thus negligible.
Moreover, the prediction of the wavemodes is likely to be inaccurate due to the presence of eigenvalues of very small and
very large magnitudes [15]. As mentioned in Section 2.1, the eigenvalue problem can be recast into a better-conditioned
form to avoid numerical problems.

In the numerical example, at each frequency only those wavemodes for which 9ImðkDÞ9o0:3 are retained for the WFE
predictions. There are up to 11 pairs of (positive- and negative-going) waves at each frequency in the frequency range
considered, where four pairs are propagating waves and the remaining are evanescent waves. The WFE predictions are
compared with those of the full FE model of the beam (meshed with the same element size). The full FE model contains
7575 DOFs whereas the WFE model has only 75 DOFs.

First, the input mobilities in the x-, y- and z-directions at A are evaluated. The WFE and full FEA results are in very good
agreement as shown in Fig. 13. The beam’s highest stiffness is in the x-direction and it is most flexible in the y-direction.
The first mode of motion in the x- and y-directions occurs at the same frequency due to geometric and material coupling
between the two directions. Although the response of the second mode in the x-direction is small, a substantial response is
observed in the y- and z-directions at the same frequency because of the anisotropy of the beam. The WFE and full FEA
predictions are indistinguishable, except for the off-resonance response for the mobility in the z-direction at high
frequencies.
Fig. 15. Response of the laminated beam in the y-direction to distributed loading at (a) B, (b) C and (c) D: — full FEA, - - WFE results with 11 wavemodes

retained.
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Next, a unit force in the y-direction is applied at A and the transfer mobility in the y-direction is evaluated at B, C and D.
The transfer mobilities at the response points evaluated using the WFE method with 11 wavemodes are in very good
agreement with the full FEA solution as shown in Fig. 14.

Now consider the response to a uniformly distributed load with unit intensity. The loading is in the y-direction, acting
on the top surface between x1=0.4L and x2=0.6L and across the full width of the beam. The velocity in the y-direction is
evaluated using the WFE method and contour integration approach with only 11 pairs of (positive- and negative-going)
waves. The response was evaluated at B, C and D. At low frequencies, the response to the distributed load is almost the
same as that of the point force shown in Fig. 14. Whether or not the response point is within or outside the loaded area, the
WFE results are in very good agreement with the results obtained via the full FEA as shown in Fig. 15. For the response at C,
disagreement between the WFE and full FEA responses are observed off-resonance at high frequencies. Moreover, at higher
frequencies, the response tends to be smaller than that of a point force due to the distributed nature of the loading.

5. Conclusions

This paper concerns the forced response of waveguides using the wave and finite element method. The formulation is
based on obtaining the response of the waveguide to a convected harmonic pressure, and using that as a kernel for the
response to a general loading which is found by Fourier transform and contour integration. The integral is evaluated
analytically so that the computation time is very small. This yields the amplitudes of the excited waves, and from them and
the system propagation and reflection properties the frequency response functions of waveguides follow.

Waveguides with arbitrarily complex cross-sections can be considered, and the numerical results are accurate if the FE
mesh is small enough. A reduced wave basis can be used and the methods described in Ref. [15] can be used to circumvent
numerical problems.
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